Highest vectors of representations (total 1) ; the vectors are over the primal subalgebra. | g1 |
weight | ω2 |
Isotypical components + highest weight | Vω2 → (0, 1, 0, 0) | |||||||||||||||||||||||||||||
Module label | W1 | |||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
| |||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | ω2 ω1−ω2+ω3+ω4 −ω1+ω3+ω4 ω1−ω3+ω4 ω1+ω3−ω4 −ω1+ω2−ω3+ω4 −ω1+ω2+ω3−ω4 ω1+ω2−ω3−ω4 −ω2+2ω4 −ω1+2ω2−ω3−ω4 −ω2+2ω3 2ω1−ω2 0 0 0 0 ω1−2ω2+ω3+ω4 ω2−2ω4 −2ω1+ω2 ω2−2ω3 −ω1−ω2+ω3+ω4 ω1−ω2−ω3+ω4 ω1−ω2+ω3−ω4 −ω1−ω3+ω4 −ω1+ω3−ω4 ω1−ω3−ω4 −ω1+ω2−ω3−ω4 −ω2 | |||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | ω2 ω1−ω2+ω3+ω4 −ω1+ω3+ω4 ω1−ω3+ω4 ω1+ω3−ω4 −ω1+ω2−ω3+ω4 −ω1+ω2+ω3−ω4 ω1+ω2−ω3−ω4 −ω2+2ω4 −ω1+2ω2−ω3−ω4 −ω2+2ω3 2ω1−ω2 0 0 0 0 ω1−2ω2+ω3+ω4 ω2−2ω4 −2ω1+ω2 ω2−2ω3 −ω1−ω2+ω3+ω4 ω1−ω2−ω3+ω4 ω1−ω2+ω3−ω4 −ω1−ω3+ω4 −ω1+ω3−ω4 ω1−ω3−ω4 −ω1+ω2−ω3−ω4 −ω2 | |||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | Mω1−ω2+ω3+ω4⊕M−ω2+2ω4⊕M−ω1+ω3+ω4⊕Mω1−2ω2+ω3+ω4⊕Mω1−ω3+ω4⊕M−ω2+2ω3⊕Mω2⊕M2ω1−ω2⊕Mω1+ω3−ω4⊕M−ω1−ω2+ω3+ω4⊕M−ω1+ω2−ω3+ω4⊕Mω1−ω2−ω3+ω4⊕4M0⊕M−ω1+ω2+ω3−ω4⊕Mω1−ω2+ω3−ω4⊕Mω1+ω2−ω3−ω4⊕M−ω1−ω3+ω4⊕M−2ω1+ω2⊕M−ω2⊕Mω2−2ω3⊕M−ω1+ω3−ω4⊕M−ω1+2ω2−ω3−ω4⊕Mω1−ω3−ω4⊕Mω2−2ω4⊕M−ω1+ω2−ω3−ω4 | |||||||||||||||||||||||||||||
Isotypic character | Mω1−ω2+ω3+ω4⊕M−ω2+2ω4⊕M−ω1+ω3+ω4⊕Mω1−2ω2+ω3+ω4⊕Mω1−ω3+ω4⊕M−ω2+2ω3⊕Mω2⊕M2ω1−ω2⊕Mω1+ω3−ω4⊕M−ω1−ω2+ω3+ω4⊕M−ω1+ω2−ω3+ω4⊕Mω1−ω2−ω3+ω4⊕4M0⊕M−ω1+ω2+ω3−ω4⊕Mω1−ω2+ω3−ω4⊕Mω1+ω2−ω3−ω4⊕M−ω1−ω3+ω4⊕M−2ω1+ω2⊕M−ω2⊕Mω2−2ω3⊕M−ω1+ω3−ω4⊕M−ω1+2ω2−ω3−ω4⊕Mω1−ω3−ω4⊕Mω2−2ω4⊕M−ω1+ω2−ω3−ω4 |