Processing math: 100%
Subalgebra D14D14
23 out of 23
Computations done by the calculator project.

Subalgebra type: D14 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from A13 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: D14

Elements Cartan subalgebra scaled to act by two by components: D14: (1, 2, 1, 1): 2, (0, -1, 0, 0): 2, (0, 0, 0, -1): 2, (0, 0, -1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 28.
Negative simple generators: g12, g2, g4, g3
Positive simple generators: g12, g2, g4, g3
Cartan symmetric matrix: (2100121101200102)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (2100121101200102)
Decomposition of ambient Lie algebra: Vω2
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 1) ; the vectors are over the primal subalgebra.g1
weightω2
Isotypic module decomposition over primal subalgebra (total 1 isotypic components).
Isotypical components + highest weightVω2 → (0, 1, 0, 0)
Module label W1
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Semisimple subalgebra component.
g1
g5
g10
g9
g8
g6
g7
g11
g3
g2
g4
g12
h3
h2
h4
h4+h3+2h2+h1
g2
2g3
g12
g4
g11
g7
g6
g8
g9
g10
g5
g1
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as aboveω2
ω1ω2+ω3+ω4
ω1+ω3+ω4
ω1ω3+ω4
ω1+ω3ω4
ω1+ω2ω3+ω4
ω1+ω2+ω3ω4
ω1+ω2ω3ω4
ω2+2ω4
ω1+2ω2ω3ω4
ω2+2ω3
2ω1ω2
0
0
0
0
ω12ω2+ω3+ω4
ω22ω4
2ω1+ω2
ω22ω3
ω1ω2+ω3+ω4
ω1ω2ω3+ω4
ω1ω2+ω3ω4
ω1ω3+ω4
ω1+ω3ω4
ω1ω3ω4
ω1+ω2ω3ω4
ω2
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizerω2
ω1ω2+ω3+ω4
ω1+ω3+ω4
ω1ω3+ω4
ω1+ω3ω4
ω1+ω2ω3+ω4
ω1+ω2+ω3ω4
ω1+ω2ω3ω4
ω2+2ω4
ω1+2ω2ω3ω4
ω2+2ω3
2ω1ω2
0
0
0
0
ω12ω2+ω3+ω4
ω22ω4
2ω1+ω2
ω22ω3
ω1ω2+ω3+ω4
ω1ω2ω3+ω4
ω1ω2+ω3ω4
ω1ω3+ω4
ω1+ω3ω4
ω1ω3ω4
ω1+ω2ω3ω4
ω2
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.Mω1ω2+ω3+ω4Mω2+2ω4Mω1+ω3+ω4Mω12ω2+ω3+ω4Mω1ω3+ω4Mω2+2ω3Mω2M2ω1ω2Mω1+ω3ω4Mω1ω2+ω3+ω4Mω1+ω2ω3+ω4Mω1ω2ω3+ω44M0Mω1+ω2+ω3ω4Mω1ω2+ω3ω4Mω1+ω2ω3ω4Mω1ω3+ω4M2ω1+ω2Mω2Mω22ω3Mω1+ω3ω4Mω1+2ω2ω3ω4Mω1ω3ω4Mω22ω4Mω1+ω2ω3ω4
Isotypic characterMω1ω2+ω3+ω4Mω2+2ω4Mω1+ω3+ω4Mω12ω2+ω3+ω4Mω1ω3+ω4Mω2+2ω3Mω2M2ω1ω2Mω1+ω3ω4Mω1ω2+ω3+ω4Mω1+ω2ω3+ω4Mω1ω2ω3+ω44M0Mω1+ω2+ω3ω4Mω1ω2+ω3ω4Mω1+ω2ω3ω4Mω1ω3+ω4M2ω1+ω2Mω2Mω22ω3Mω1+ω3ω4Mω1+2ω2ω3ω4Mω1ω3ω4Mω22ω4Mω1+ω2ω3ω4

Semisimple subalgebra: W_{1}
Centralizer extension: 0

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 490.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00): (300.00, 590.00)
1: (0.00, 1.00, 0.00, 0.00): (300.00, 690.00)
2: (0.00, 0.00, 1.00, 0.00): (250.00, 590.00)
3: (0.00, 0.00, 0.00, 1.00): (250.00, 590.00)




Made total 527 arithmetic operations while solving the Serre relations polynomial system.